Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Experimental and Numerical Investigation of Hydrogen Injection and its Preliminary Impact on High Performance Engines Development

2023-04-11
2023-01-0402
Under the proposed Green Deal program, the European Union will aim to achieve zero net greenhouse gas (GHG) emissions by 2050. The interim target is to reduce GHG by 55% by 2030. In the current debate concerning CO2-neutral powertrains, bio-fuels and e-fuels could play an immediate and practical role in reducing lifecycle engine emissions. Hydrogen however, is one of the few practical fuels that can result in near zero CO2 emissions at the tailpipe, which is the main focus of current legislation. Compared to gasoline, hydrogen presents a higher laminar flame speed, a wider range of flammability and higher auto-ignition temperatures, making it among the most attractive of fuels for future engines. As a challenge, hydrogen requires a very low ignition energy. This may imply an increased susceptibility to Low Speed Pre-Ignition (LSPI), surface ignition and back-fire phenomena. In order to exploit hydrogen’s potential, the injection system plays an extremely important role.
Technical Paper

Demonstration of Low Criteria Pollutant and Greenhouse Gas Emissions: Synergizing Vehicle Emission Reduction Technology and Lower Carbon Fuels

2024-04-09
2024-01-2121
This study focuses on evaluation of various fuels within a conventional gasoline internal combustion engine (ICE) vehicle and the implementation of advanced emissions reduction technology. It shows the robustness of the implemented technology packages for achieving ultra-low tailpipe emissions to different market fuels and demonstrates the potential of future GHG neutral powertrains enabled by drop-in lower carbon fuels (LCF). An ultra-low emission (ULE) sedan vehicle was set up using state-of-the-art engine technology, with advanced vehicle control and exhaust gas aftertreatment system including a prototype rapid catalyst heating (RCH) unit. Currently regulated criteria pollutant emission species were measured at both engine-out and tailpipe locations. Vehicle was run on three different drive cycles at the chassis dynamometer: two standard cycles (WLTC and TfL) at 20°C, and a real driving emission (RDE) cycle at -7°C.
Technical Paper

A Rapid Catalyst Heating System for Gasoline-Fueled Engines

2024-04-09
2024-01-2378
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions.
X